A visit to a peat bog will make you rethink everything you know about the surface of our planet. A bog is land, sort of, but not in the solid-ground sense you’re used to. If you try walking across one’s surface, you may feel the soft organic muck known as peat undulate beneath you — or you may sink into it yourself. From the surface, it’s hard to know whether the waterlogged peat extends 3 feet deep or 30.
These strange, soggy places have historically been reviled, and many have been drained so that people could build on or farm the land. In the era of climate change, however, they are gaining newfound fame: Peatlands are among nature’s most effective ways of storing carbon and keeping it out of the atmosphere. To ensure it remains there, scientists have long sought a way to calculate how much peat and carbon they store.
A recent study may provide the answer. Late last year in Nature, scientists reported a mathematical model that they say can calculate the shape of any peat bog on Earth using a simple set of measurements. The model, if it works as advertised, could make it easy to tally up the carbon in a bog — a crucial step in determining a given bog’s contribution to reducing climate change.
Shawn Lum, an ecologist at Nanyang Technological University in Singapore who was not involved with the research, hailed the paper as a breakthrough, calling it, “the peatland equivalent of special relativity.”
Lum’s praise is revealing. For decades, biologists have longed for equations in the mold of E = mc2 or Newton’s law of gravity — simple, sweeping mathematical rules that unite realms of knowledge and provide profound insights into the hidden order that governs our world. While such all-encompassing laws have long driven progress in physics, their life-science equivalents have proved elusive. Now, apparently, some unity has been found among the world’s bogs.
Peat bogs hardly seem like the kinds of orderly places that would yield general laws. These nutrient-poor ecosystems, fed solely by rainwater, form when dead plants become trapped in soggy environments that lack oxygen and are therefore inhospitable to microbes that might digest the dead tissues. The dead vegetation piles up over hundreds or thousands of years, forming wide, gently sloping domes that can rise dozens of feet above the surrounding land.